Reducing crude protein in beef cattle diet reduces ammonia emissions from artificial feedyard surfaces.
نویسندگان
چکیده
Concentrated animal feeding operations are major sources of ammonia to the atmosphere. Control methods to reduce emissions include acidifying amendments, urease inhibitors, and absorbents. For beef cattle, decreasing crude protein (CP) in diets may be the most practical and cost-effective method to reduce ammonia emissions. Our objective was to quantify the effect of reducing CP in beef cattle diet on ammonia emissions. Two groups of steers were fed diets with either 11.5 or 13.0% CP and all urine and feces were collected. Manures from the two diet treatments were applied in a replicated laboratory chamber experiment, and ammonia emission was quantified using acid gas washing. In four seasonal field trials, manures from the two diet treatments were applied to two 10-m-diameter, circular, artificial feedyard surfaces, and ammonia emission was quantified using the integrated horizontal flux method. Manure from steers fed 11.5% CP diet had less urine, less urinary N, and a lesser fraction of total N in urine, compared with the 13.0% CP diet. Decreasing crude protein in beef cattle diets from 13 to 11.5% significantly decreased ammonia emission by 44% (p < 0.01) in the closed chamber laboratory experiment, and decreased mean daily ammonia flux by 30% (p = 0.10), 52% (p = 0.08), and 29% (p < 0.01) in summer, autumn, and spring field trials, respectively. No difference was observed in winter. On an annual basis, decreasing crude protein reduced daily ammonia flux by 28%. Reducing crude protein in beef cattle diets may provide the most practical and cost-effective way to reduce ammonia emissions from feedyards.
منابع مشابه
Process-based Modeling of Ammonia Emission from Beef Cattle Feedyards with the Integrated Farm Systems Model.
Ammonia (NH) volatilization from manure in beef cattle feedyards results in loss of agronomically important nitrogen (N) and potentially leads to overfertilization and acidification of aquatic and terrestrial ecosystems. In addition, NH is involved in the formation of atmospheric fine particulate matter (PM), which can affect human health. Process-based models have been developed to estimate NH...
متن کاملDaily, monthly, seasonal, and annual ammonia emissions from Southern High Plains cattle feedyards.
Ammonia emitted from beef cattle feedyards adds excess reactive N to the environment, contributes to degraded air quality as a precursor to secondary particulate matter, and represents a significant loss of N from beef cattle feedyards. We used open path laser spectroscopy and an inverse dispersion model to quantify daily, monthly, seasonal, and annual NH emissions during 2 yr from two commerci...
متن کاملFlux-Gradient Estimates of Ammonia Emissions from Beef Cattle Feedyard Pens
Concentrated animal feeding operations are major sources of ammonia emitted to the atmosphere. There is a considerable literature on ammonia emissions from poultry and swine, but few studies have investigated large, open lot beef cattle feedyards. We used the micrometeorological fluxgradient method to estimate ammonia emissions during six field campaigns in three seasons. Profiles of ammonia, w...
متن کاملInfluence of dietary crude protein concentration and source on potential ammonia emissions from beef cattle manure.
Emissions of ammonia, as well as other gases and particulates, to the atmosphere are a growing concern of livestock producers, the general public, and regulators. The concentration and ruminal degradability of CP in beef cattle diets may affect urinary and fecal excretion of N and thus may affect ammonia emissions from beef cattle feed yards. To determine the effects of dietary CP concentration...
متن کاملAmmonia emissions and performance of backgrounding and finishing beef feedlot cattle fed barley-based diets varying in dietary crude protein concentration and rumen degradability.
Crossbred beef steers (n = 312) were used in an experiment with a completely randomized design during the growing (235 ± 1.6 kg initial BW) and finishing (363 ± 2.7 kg) phase to determine the effects of dietary CP concentration and rumen degradability on NH3-N emissions, growth performance, and carcass traits. Diets were barley based and consisted of 55% silage and 45% concentrate in the backgr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental quality
دوره 35 2 شماره
صفحات -
تاریخ انتشار 2006